<ins id="phbbn"><video id="phbbn"></video></ins>
<cite id="phbbn"></cite><menuitem id="phbbn"></menuitem>
<cite id="phbbn"></cite><menuitem id="phbbn"><video id="phbbn"></video></menuitem>
<var id="phbbn"></var>
<cite id="phbbn"></cite><cite id="phbbn"><video id="phbbn"><menuitem id="phbbn"></menuitem></video></cite><cite id="phbbn"><video id="phbbn"><menuitem id="phbbn"></menuitem></video></cite>
<cite id="phbbn"></cite>
<cite id="phbbn"></cite>
<var id="phbbn"></var>
<var id="phbbn"></var>
<var id="phbbn"><video id="phbbn"><thead id="phbbn"></thead></video></var><cite id="phbbn"></cite>
<var id="phbbn"></var>
<var id="phbbn"></var>
<cite id="phbbn"></cite>
<cite id="phbbn"><video id="phbbn"></video></cite>
<ins id="phbbn"><video id="phbbn"></video></ins>
當前位置:首頁 > 信息中心 > 學術科研

學術科研

學術報告:Extreme Learning Machines (ELM) – When ELM and Deep Learning Synergize

報告題目:Extreme Learning Machines (ELM) – When ELM and Deep Learning Synergize

超限學習機和深度學習的匯聚 

: Guang-Bin Huang

 Professor of School of Electrical and Electronic Engineering  

 Nanyang Technological University, Singapore

 黃廣斌,新加坡南洋理工大學電子電氣工程學院教授

報告時間:75日,周五下午1400

報告地點:信息工程學院2222會議室

主辦單位:信息工程學院、科學技術處

歡迎廣大師生參加!

Abstract

One of the most curious in the world is how brains produce intelligence. Brains have been considered one of the most complicated things in the universe. Machine learning and biological learning are often considered separate topics in the years. The objectives of this talk are three-folds: 1) There exists some convergence between machine learning and biological learning. Although there exist many different types of techniques for machine learning and also many different types of learning mechanism in brains, Extreme Learning Machines (ELM) as a common learning mechanism may fill the gap between machine learning and biological learning, in fact, ELM theories have been validated by more and more direct biological evidences recently. ELM theories actually show that brains may be globally ordered but may be locally random. ELM theories further prove that such a learning system happens to have regression, classification, sparse coding, clustering, compression and feature learning capabilities, which are fundamental to cognition and reasoning; 2) ELM unifies Support Vector Machines (SVM), Principal Component Analysis (PCA), Non-negative Matrix Factorization (NMF); 3) ELM provides some theoretical support to the universal approximation and classification capabilities of Convolutional Neural Networks (CNN), ELM is catching up with Deep Learning in some benchmark datasets which Deep Learning used to perform well.

黃廣斌,新加坡南洋理工大學電子電氣工程學院教授

簡介

 

黃廣斌新加坡南洋理工大學電子電氣工程學院(終身)教授。他被Thomson Reuters 評為“Highly Cited Researcher高被引用研究者工程類,計算機科學類)。他是新加坡總統科學獎被提名人。他的關于超限學習機的文章在2017年被谷歌學術列為“過去10年經過時間驗證的經典Top10人工智能文章”中的第二。

 

主持的主要項目有德國寶馬集團和南洋理工大學未來汽車聯合研究實驗室人機交互,腦機交互以及汽車輔助駕駛項目,英國勞斯萊斯和南洋理工大學聯合研究實驗室導航決策輔助系統項目,新加坡科技工程和南洋理工大學先進機器人聯合研究實驗室場景識別和機器學習項目,臺灣臺達電子股份有限公司和南洋理工大學物聯網聯合研究實驗室數據分析和視頻項目。還擔任過新加坡樟宜機場新加坡航空公司地面服務公司第五貨運大廈的信息跟蹤控制系統升級改造的總設計師和技術負責人。


打印本頁  關閉窗口
© 2018 揚州大學信息工程學院(人工智能學院) 版權所有
地址:江蘇省揚州市華揚西路196號 電話:0514-87993875、87993876 傳真:0514-87887937 E-mail:fgr@yzu.edu.cn 郵編:225127
Produced By 大漢網絡 大漢版通發布系統 秒速赛车预测